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The lecture is an introduction to signals from the time domain perspective. It will
be slightly longer than 50 minutes. The main focus is a revision of some of the
materials covered last year, but | am taking a more mathematical modeling
approach to signals with voltages expressed as a function of time.

In the next lecture, | will take an alternative view, where signals will be considered
not as functions of time, but of frequency.
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Here are three examples of signals we often encounter that require some form of
“processing”:

The cardiac signal: Your doctor may acquire this continuous time signal, which is
almost (but not exactly) periodic. The importance of this signal lies in the detail
features appearing in the voltage vs time curve.

The FTSE 100 index: This plot of the index as it varies throughout the day is
essentially a sequence of man-made numbers expressed as a discrete time series.
However, we often treat such a time series as a signal and apply conventional
processing techniques to perform prediction, analysis, and so on!

A 2-dimensional MRI scan image of a brain: This is a function of intensity (of the
image as pixels) in 2-D space. Therefore, the independent variables are the x and y
coordinates, not time. However, signal processing techniques are applicable to such
signals, not only as a function of distance (space), but also in 2 or more dimensions.



Signals Classification (1)

+ Signals may be classified into:

. Continuous-time and discrete-time signals
. Analogue and digital signals

. Periodic and aperiodic signals

. Energy and power signals

. Deterministic and probabilistic signals

. Causal and non-causal

. Even and Odd signals
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Here is 7 separate classifications of signals. Often such classification does not

appear that useful. However, they are actually very important in signal processing
because each class of signal has its own unique set of properties, significance and
implications.



Signal Classification (2) — Continuous vs Discrete
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We have already looked at continuous time signal such as the ECG signal, and

discrete time signal such as the stock market or the UK growth rate in the last few
years.

Although real physical signals (such as ECG) are generally continuous in nature, we
almost always process such as signal using computers. Therefore, in practice, signal
processing are usually performed in the discrete time domain. The process of
turning a continuous time signal to a discrete time signal is known as sampling. We
will consider the mathematics relating to sampling in a later lecture.



Signal Classification (3) — Analogue vs Digital
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Signals can be analogue or digital. Most real signals are analogue in nature, but

digital computers need to process this as numbers with discrete levels. The process

of turning an analogue signal to a digital signal is through A-to-D converters.

It is important to note that digitizing an analogue signal introduces error (or
distortion) and therefore it inherently a “corrupting” process. Digitizing a signal

introduce quantization noise. In contrast, the process of sampling, done properly,

will not corrupt the signal. We can always recover the original continuous time
signal from the discrete time version perfectly. (At least this is theoretically

possible).



Signal Classification (4) — Periodic vs Aperiodic

+ A signal x(t) is said to be periodic if for some positive constant T,

x(O)=xit+T) for all ¢

+ The smallest value of T, that satisfies the periodicity condition of this
equation is the fundamental period of x(t).
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Signals can be periodic or not. ECG is approximately periodic, and speech signal is
definitely NOT periodic.

If a signal is periodic with period T,, then it has a fundamental frequency 1/T,. An
example of this is the note from a tuning fork — which is almost a perfect sinewave
of a known frequency.



Signal Classification (5) — Deterministic vs Random
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A signal can be deterministic or random.

Real signals are generally not completely deterministic, but many signals can be
approximated by the sum of a deterministic component with random noise added.
Often, the deterministic part of the signal is what you want to retain, and the

random part is what you want to get rid of.



Signal Classification (6) — Causal/Non-causal, Even/Odd
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Causal and non-causal simply refers to whether a signal has zero amplitude at time
< 0. Asignal x(t) = 0 for all t <0 is known as causal, while otherwise it is non-causal.

All real physical signals have a definite start, so they are causal. However, digital
circuits and delay components allow us to process signals and “pretend” that they
are non-causal. We will discuss this further in the course.



Size of a Signal x(t) as energy
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+ Measured by signal energy Ey:
© 2
E, =f_oox (1) dt
+ Generalize for a complex valued signal to:
o 2
E. = f x| dr

+ Energy must be finite, which means

signal amplitude — 0 as |f| — o
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The first issue to consider when encountering a signal is to ask: “how big is it?”
What is meant by “size” of a signal?

One useful measure of a signal size is its energy measure as defined here in the
slide.

The square term (of voltage, say) ensures that the sign of the signal x(t) does not
matter. (Otherwise, there is a danger that positive and negative parts of the signal
cancel out each other.) The integration is over the duration of * oo,

To be more general, the signal x(t) could be complex (i.e. with real and imaginary
parts). What does a complex value mean? It means that the signal not only have
magnitude, it also has phase information. For example, if you are dealing with a
sinusoidal signal, then the magnitude determines the signal amplitude (or peak
value), and the phase determines the starting position at time 0.

Since the definition of energy of a signal requires integral over infinite time, this
measure is only useful if the energy is finite. Thatis, as [t| = oo, the signal
amplitude must - 0.



Size of a Signal x(t) as power

+ If amplitude of x(t) does not — 0 when t — o0, need to measure power Px instead:

.1 pr2 5
P, —Tlggo? n* (1) dt

+ Again, generalize for a complex valued signal to:

.1 pTr2
B =Th—1>20?f—T/z (o)

+ Signal with finite energy + Signal with finite power
(zero power) (infinite energy)
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What happens if the signal does not have finite energy? What does this mean
anyway?

For example, if you are considering the signal of the power mains from your
household power socket. For all intend and purposes, the mains signal (50 Hz at
230V RMS) is continuous (i.e. goes on forever). Therefore, when we consider the
size of such as signal, we don’t use energy — we use POWER instead as define
above.

In other words,
POWER = ENERGY / TIME, and

ENERGY = POWER x TIME

10



Useful Signal Operations —Time Shifting (1)

x(1)

~
+ Signal may be delayed by time T: /\\

0 Em

(a)

p+D=x@®

=x(t-T
+ oradvanced by time T: &) = x(t — T)

$-1)=x ) B
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When we consider signals as a function of time, there are several useful
mathematical models that are being used very often.

Perhaps the most common is to express a signal with a certain time delay as shown
above. Note that advancement in time is simply a delay of —T.

11



Useful Signal Operations —Time Scaling (2)

+ Signal may be compressed in time

(by a factor of 2): \
¢ (t/2)=x(¢) ‘
T, i |0 T,

+ or expanded in time (by a factor of 2): /‘\ POTA
¢ (21) = x(1) L
Ll i3 T
+ Same as recording played back
at twice and half the speed
respectively
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Another mathematical model we often use is the stretching and compression of a
signal in time.

12



Useful Signal Operations —Time Reversal (3)

+ Signal may be reflected about the
vertical axis (i.e. time reversed):

¢@t) = x(—1)

x(f)

+ We can combine these three operations.

o For example, the signal x(2t - 6) can be
obtained in two ways:

1. Delay x(t) by 6 to obtain x(t - 6), and then
time-compress this signal by factor 2
(replace t with 2t) to obtain x (2t - 6).

2. Alternately, time-compress x (t) by factor 2 to

(a)
2 (»b(t) = X(*‘t)

2

obtain x (2t), then delay this signal by 3
(replace t with t - 3) to obtain x (2t - 6). b

ol =

f P
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The third common operation on a signal is time reversal. This may not appears that

practical. (Who would play a tape back to front?)

However, as you will find out later on the course when we consider a common
signal processing operation known as “convolution”, time-reversal plays a very

important part.

Time reversal is achieved by simply reversing the sign of the time variable.

13



Signal Models (1) — Unit Step Function u(t)

+ Step function defined by: 1 u(?)

® 1 t>0
/4 =
! 0 t==0

+ Useful to describe a signal that begins
att =0 (i.e. causal signal).

—at

+ For example, the signal ¢
represents an everlasting exponential
that starts at t = -o.

¢ The causal for of this exponential can
be described as:

e u(r)
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Next let us consider a number of important time domain signals that will be use
throughout this course.

Most important is the step function as shown here. Step signal is common —an
instruction to a robot arm moving from A to B can be model as a step signal. As will

be seen later on this course, the response of a system to a step signal input (known
as the “step response”) will characterise the entire system.

We often use the step function u(t) in modelling a causal signal. Here is a decay
exponential that is causal. We simply multiply the exponential function with the
step function!

e~ u(t)

14



Signal Models (2) — Pulse signal

+ A pulse signal can be presented by two step functions:

x()=u(t—2)—u(t—4)

x(1)
u(t — 2)
1 ............... 1 ..............
4

0 2 = £ 0 2 s

u(t —4)

-1
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Pulse signals are obvious. Less obvious is how to model this as the sum of two step

functions with two different delays, one by 2 time units, and another by 4 time
units:

x)=u(t—=2)—u(t—4)

15



Signal Models (3) — Unit Impulse Function 5(t)

+ First defined by Dirac as: 8(1) =10 t=£0
x
/ s dt =1
-0
Approximation of
Unit Impulse 1 an Impulse
(1) =
[
€e—0
0 ; — _EIE t —
2 2
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Impulse function is one of the most important functions in signal processing. It is
sometimes known as the Dirac function, after the mathematician Paul Dirac.

It is also known as the delta function and is written as 3(t).

Unit impulse is a spike at t=0, and that its area is exactly = 1.

An impulse function can take on many other forms. For example, it can also be a
pulse with with ®=¢&/2, and the amplitude of the pulse is 1/¢. Itis centred att =0,
and the area of the pulse (i.e. under the curve) is again exactly 1.

16



Multiplying a function ®(t) by an Impulse

+ Since impulse is non-zero only att = 0, and @(t) at t = 0 is ®(0), we get:

¢ (1)8(2) = ¢(0)6(1)

¢ We can generalise thisfort=T:

o)t —T)=¢(T)ét—T)
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If we have a time domain function ¢(t) and multiply this with the impulse d(t), we
basically extract or sample the signal ¢(t) att=0.

Therefore if we now delay the impulse function by T, then what we get is the value
of ¢(t)att=T. In otherwise, we are sampling the function ¢(t) atT. Therefore
impulse function has a SAMPLING property.

17



Sampling Property of Unit Impulse Function

¢ Since we have: ¢ (t)5(t) = ¢p(0)6(t)

+ It follows that: 0 d(t)6(t)dt = ¢(0) JOO(S‘(t)dt
e = ¢(0)

+ This is the same as “sampling” ¢(t) att = 0.

+ If we want to sample ¢(t) att =T, we just multiple ¢(t) with §(t —T)
| o@ste-de =g

+ This is called the “sampling property” of the unit impulse.
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Let us consider what happens when we multiply the unit impulse 6(t) by a function
¢ (t) that is continues at t = 0. Since the impulse has nonzero value only at t=0, and
the value of ¢ (t) at t=0 is ¢»(0), we obtain:

¢()6(t) = ¢(0)5(¢)

In order words, multiplying a continuous function ¢ (t) with a unit impulse att=0
results in an impulse, also located at t=0 and has strength of ¢ (0).

We can now generalise this results by time-shifting the impulse function by
delaying it by T. If you multiple ¢(t) 6(t — T), which is an impulse located at t=T,
we get:

¢ —T) = (1)t —T)

Let us integrate this for t from —oo to +00, we get:

f $(DS(t — T)dt = ¢(T)

This result means that the area under the product of a function with an impulse
6(t) is equal to the value of that function at the instant at which the unit impulse is
located. This property is known as the sampling property of the unit impulse.

18



The Exponential Function est (1)

+ This exponential function is very important in signals & systems, and the
parameter s is a complex variable given by:

s=0+jw
¢ Therefore

eSt = g(OHW)t = o0tpj0t — o0t (o5t + jsinwt) [eq 1]

+ Since s* =0 — jw (the conjugate of s), then

*
eS

t = e(0-J0)t — p0to=jWt = o0t(coswt — jsinwt) [eq 2]
¢ Eq1+Eq2gives:

1 .
e%coswt = 5 (eSt+est)
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Another important function in the area of signals and systems is the exponential
signal e%¢, where s is complex in general, given by:

S=0+jw
Substituting this provides the following important equation:
eSt = (0Ot = gdtejWt = o0t (cosut + jsinwt)
We can compare this exponential function eSt to the of the Euler’s formula:
e/t = (coswt + jsinwt)

Here the frequency variable jw is genearlised to a complex variable s = ¢ + jw.
For this reason, we designate the variable s as the complex frequency.

19



The Exponential Function est (2)

¢ If o =0, then we have the function ¢/¢’, which has a real
frequency of ®

¢ Therefore the complex variable s = o + jw is the complex
frequency

¢ The function ¢ can be used to describe a very large class of
signals and functions. Here are a number of example:

1. A constant k = ke” (5 =1l)

2. A monotonic exponential ¢’ (=0, s=0)

3. A sinusoid cos ot (0 =0,5s =xjw)

4. An exponentially varying sinusoid e’ cos wt s=0=%jw)
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This function is a very important. If ¢ = 0, then ¢St is a sinusoidal function. It is

used to represent steady state signal with a frequency .
If o # 0, then the signal either grows or decay exponentially.

Laplace and Fourier transform, which we will study in later lectures, are based on
this exponential function.

20



The Exponential Function est (2)
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This four plots shows the four different possible signals represented by such an
exponential function.

21



The Complex Frequency Plane s = o + jw
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Finally, one can express the value s (which is also known as “complex frequency”, in

a complex plane as shown here. We call this the s-plane. The location of the
complex frequency of a signal will then take on the four different forms depending

where s lies.

22



Three Big Ideas (1)

1. The size of a time-limited signal is measured by it energy:
N

ta
E, = j x2(t) dt E, = Z x?%[n]
ty n=1
2. Delaying a signal x(t) by time T can be written as:
y(@®) =x(t-T)
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Every session, | will try to identify three things that you MUST know if you forget
everything else. | will call these the Big Ideas.

For this lecture, these are:

1. Trying to determine the size of a signal is not as easy as you might think. You
are probably familiar with using peak amplitude to measure the size. In the

past, you have been exposed to the idea of “root-mean-square” or rms voltage.

Here we define a term “energy” to measure the size of a signal. It is similar to
rms, but defined for signal with finite duration.

The definition shown in the slice provide two versions: one for continuous time
signal, and the second of discrete (or sampled) time signal. Since we will be
doing computation on a microprocessor, the discrete time version is actually
more useful.

2. Time-shift property of signal is very important. We model this simply by
changing the variable t to t-T where T is the delay time.

23



Three Big Ideas (2)

3. Unit impulse or delta function §(t) can be use to model
taking a sample from a signal. To take one sample of x(t) at
time T is modelled as

xr(t) =x(@®)X6(t —T)

S(t—-T) _
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Unit impulse or delta function or Dirac function §(t) is one of the most
important signal. Combining with idea 2), we can time shift this to any instance
as 6(t — T) and then use multiply operator to take a sample of a signal x(t) at
time T. This is called the sampling property of the unit impulse. You will find
this very useful to derive what happens to a continue time signal when we
sample it at regular interval.
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